

Breathe Easy: Unlocking the Power of Probiotics for Recurrent Respiratory Infections (RRIs) in Children

Laiba Batool¹

Abstract:

Recurrent Respiratory Infections (RRIs) constitute a remarkable strength analysis and are liable for a serious mortality rate in children worldwide. Viral or bacterial infections have been recognized as vital contributing factors for death and disorder in the respiratory tract. Respiratory tract infections (RTIs) produce serious respiratory illnesses from common cold-like symptoms to severe conditions, usually attacking the lungs and other internal organs. Anyhow, RRIs particularly diminish a child or family's standard of living and give rise to therapeutic costs. Innate and acquired immunity are quickly involved in identifying and eliminating pathogenic species. Several nutritional additives like probiotics have been revealed to control immune functions and reduce the chance of RTIs. Probiotic bacteria as useful microbes can modify common viral replication, such as barrier functions and innate or adaptive immune responses. Moreover, interference with probiotics could influence the framework of the gut microbiota that can control pulmonary immune functions through the gut-lung axis. Hence, probiotics could guide medical management in designing targeted and alternative medicinal applications for RRIs in children

Keywords: *Respiratory tract infections (RTI), Recurrent Respiratory Infections (RRIs), Probiotics*

Introduction

Respiratory infections are repeated or chronic disorders, as one of the vital problems in children, having remarkable mortality (Troeger et al., 2018). Recurrent respiratory infections (RRIs) are a widespread health problem that gives rise to several doctor visits and regular professional care during childhood (de Oliveira et al., 2019). This has a major effect on the background of affected children, pediatricians, and the pharmaceutical labor (Nagaraju et al., 2021).

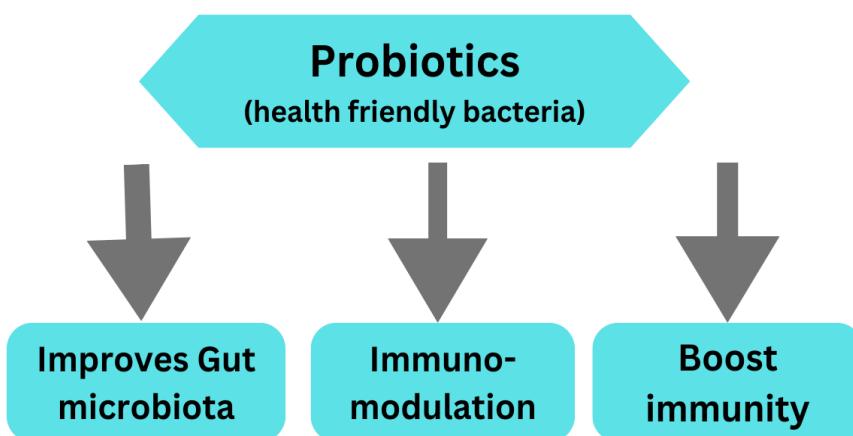
Moderate imperfection of the immune system, premature entry into nursery school, contamination in an environment, introduction to passive smoking, or allergic conditions are some risk factors that lead to the reappearance of RRIs (Cuppari et al., 2020). Viral infections are significant for performing a vital role as a

¹ Institute of Biological Sciences, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan. (Corresponding authors) Email: laibabatool25202@gmail.com

universal cause of respiratory infections (Charlton et al., 2018). The task of physicians and other healthcare contributors has been extended from simply curing disease to carrying out measures meant for health improvement or defense against disease (Organization, 2023).

However, antibiotics or anti-inflammatory medicines are often and inefficiently delivered in clinical applications. In this way, to minimize the inappropriate use of antibiotics, some other therapies have newly been suggested to lessen drug resistance and prohibit RRIs (Guitar & Wright, 2018). The survey of the nasal microbiome has led to the awareness of an application that utilizes “health-friendly bacteria” (Konovalovas et al., 2024). These bacteria activate immune responses or destroy harmful species by interchanging with the local epithelium and immune cells (Ranjha et al., 2021).

These bacteria turned out to be essential or productive microbes, commonly called probiotics, that help microbiome homeostasis as effective protection against the production of RRIs or in the analysis of some other infections such as Otitis media, SARS-CoV-2 infection, etc., (Cristiana et al., 2024). Probiotics have been appeared to be favorable for protecting or curing respiratory infections in an extreme population (Stavropoulou & Bezirtzoglou, 2020). This review focuses on an advanced research valuable discovery, allowing an understanding of the complex motility of RRIs or analyzing the prospects of probiotics as an established term to minimize the strength of these respiratory infections.


Outline of Recurrent Respiratory Infections (RRIs) and Probiotics:

Recurrent Respiratory Infections (RRIs) are a prevalent and universal medical situation, having a major general or economic effect, especially in children (Vysochyna & Kramarchuk, 2023). In 2020, to command doctors in the administration and protection of children with RRIs, an Italian inter-company agreement paper appeared to produce the latest definition of RRIs by analyzing international technical publications utilizing the GRADE method (Grading of Recommendations Assessment, Development, and Evaluation). It has been illustrated that in the first 6 years of age group, a child who did not undergo any clinical disorder encounters various RRIs that are usually lenient (Cristiana et al., 2024). Regardless of being a benign situation that is natural to get better by the age of 12 slowly, it particularly influences the child’s safety and raises serious therapeutic costs (Chiappini et al., 2021).

In compliance with an updated definition of the International Scientific Association for Probiotics and Prebiotics (ISAPP), probiotic products are recommended as medical or protective choices for childhood disorders and produce biological organisms that impart beneficial health impacts on the host when consumed

adequately (D'Agostin et al., 2021). The human microbiome is a topic of important analysis interest, as well as its contribution to host preservation, biology, or the growth of a balanced immune system (Dominguez-Bello et al., 2019). Some probiotic strains have recently increased the relevant microbiota composition to avoid recurrent upper respiratory tract disorders (Debnath et al., 2022). These strains involve *Lactobacillus salivarius PS7*, *Streptococcus salivarius K12*, and *Streptococcus salivarius 24SMB*. Probiotics display strain-specific immunomodulatory effects on the immune cells and the host by triggering toll-like receptors (TLRs), likewise activating interferon (IFN) pathways (Raheem et al., 2021). Probiotic additives that improve the microbiota to provide healthiness have been expanding, bringing about the international operation of various probiotics in public and health maintenance environments (Kouhounde et al., 2022).

Figure 6: Main Functions of Probiotics for Human Health

Utilization of Probiotics in the Treatment of Respiratory Tract Infections:

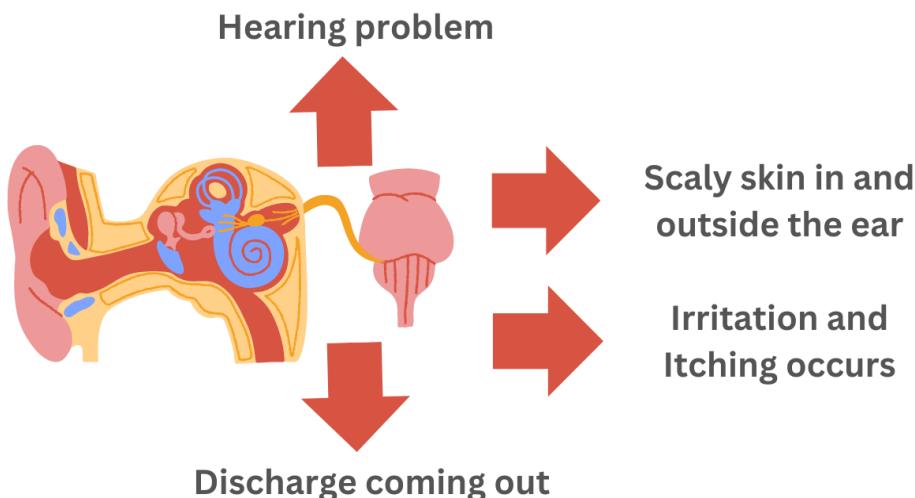
RTIs are broadly generated by the development and disruption of various viral or bacterial microbes that may cause serious harm to the upper respiratory tract, for example, Influenza virus (IFV), enterovirus, adenovirus, and a respiratory syncytial virus are responsible for most respiratory disorders (Debnath et al., 2022). Recent research has illustrated that children with balanced immunity are less likely to develop respiratory microbes and their healing rate is faster (Govers et al., 2022). Probiotics have been investigated as a possible medical procedure to control entirely immune functions against several RTIs such as cough, pneumonia, asthma, pharyngitis, and laryngitis (Pico-Monllor et al., 2021). Probiotics are usually utilized orally as dietary

additives and food, e.g., yogurt. Hence, their main action site is in the gastrointestinal (GI) tract, which is subjected to pathogens or nutrients because of the thin mucosal layer (Lehtoranta et al., 2020).

The ability of probiotics is acknowledged as usable microbes that regulate the level of the favorable bacterial population in the gastrointestinal tract and boost host protection (Kerry et al., 2018). Probiotics also protect against other respiratory illnesses such as allergic reactions, chronic COPD, or inflammation in the airways by improving respiratory immunity (Huang et al., 2022). Probiotics can influence Treg cells, which are involved in eliminating allergic reactions (Dargahi et al., 2019). Recently, the *Bifidobacterium* or *Lactobacillus* probiotic combination utilized in this case is well-regulated to diminish the seriousness of many RRIs by increasing the possibility of a cure rate (Cristiana et al., 2024).

Table 4: List of Some Probiotic Species with their Immunomodulatory Effects

Probiotic species	Immunomodulatory effects
<i>Streptococcus salivarius</i> 24SMBc	Eliminates recurrent upper respiratory tract infections (URTIs) by rebalancing the nasal microbiota (Vertillo Aluisio et al., 2022).
<i>Streptococcus oralis</i> 89a	Particularly reduces the chances of symptoms in children suffering from RRIs by eliminating pathogens (Bidossi et al., 2018).
<i>Lactobacillus Acidophilus</i>	Regulate inflammatory disorders, boost barrier activities, and improve immunity (Gao et al., 2022).
<i>Lactobacillus rhamnosus</i> GG (LGG)	Trigger antigen-presenting cells (APCs) of healthy blood donors to increase immune responses (Fong et al., 2016).
<i>Lactobacillus reuteri</i>	Regulates the innate immune-cell response against microbes which shows anti-inflammatory activities (Kišová et al., 2022).
<i>Lactobacillus casei</i> strains Shirota (LcS) and DN114001	Exhibits favorable impacts against various bacterial or viral contamination through the adjustment of immune homeostasis (Al Kassaa & AL KASSAA, 2017).
<i>Lactobacillus salivarius</i> AH102	Displays dose-dependent immunomodulatory effects on human dendritic cells (DCs) preventing airway infections such as asthma (Debnath et al., 2022).

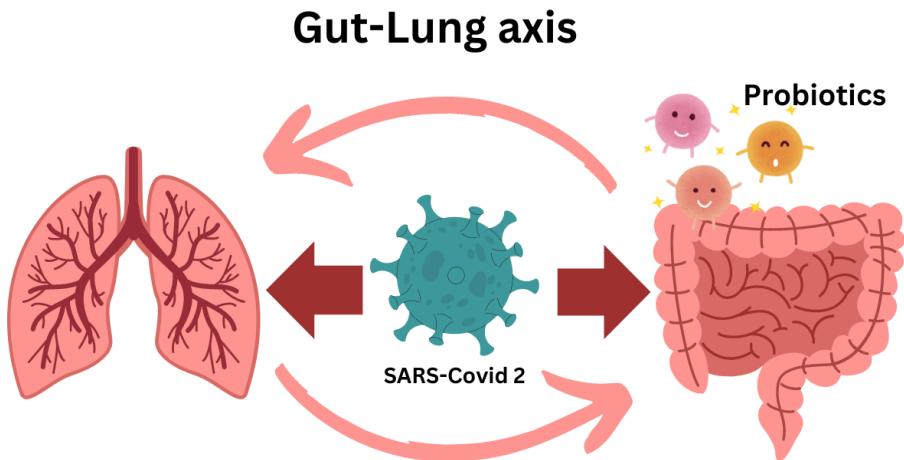

<i>Streptococcus thermophilus</i>	Improves regulatory DCs, and influences Treg cells against allergic reactions (Dargahi et al., 2021).
<i>Bifidobacterium bifidum</i>	Modify the immune system by enhancing immunoglobulins, triggering less epithelial breakdown of intestinal tissue (Lim & Shin, 2020).
<i>Bifidobacterium breve AH1205</i>	Prevention against allergic infections, and improves Treg activity by producing anti-inflammatory cytokines (Debnath et al., 2022).
<i>Bifidobacterium longum AH1206</i>	Promotes T-cells to prevent respiratory allergic infections, and maintains the balance of gut microbiota (Konieczna et al., 2012).

Treatment of Otitis Media in Children by Probiotics:

Acute otitis media (AOM) is the most common disorder in children linked with Eustachian tube dysfunction during upper respiratory tract infections, empowering pathogens to produce infection in the middle ear (Sarlin et al., 2023). General pathogens involve *Streptococcus pneumonia*, non-typeable *Hemophilus influenzae* (NTHi), and *Moraxella catarrhalis*, which increase rapidly in the nasopharynx (NP), where they reach the eustachian tube and produce OM (Browne, 2017). Therefore, persistent or improper utilization of antibiotics is linked with antimicrobial resistance and also enables expansion with resistant pathogenic strains (Romandini et al., 2021).

Treatment of AOM plays an important role in decreasing the complete usage of antibiotics in children (Suzuki et al., 2020). The management of probiotics has been analyzed to determine their capability to cure and reduce OM in children (Coleman & Cervin, 2019). *Lactobacillus* has mainly proven non-successful in curing AOM, which principally relates to the gut microbiome and only occupies the nasopharyngeal microbiome. Lately, economically convenient probiotic oral products producing *Streptococcus salivarius K12* strains may eliminate the comparative presence of pathogens in the nasopharyngeal microbiome while sustaining its biodiversity (Chen, 2021).

Figure 7: General Complications of Ear Infections in Acute Otitis Media (AOM) in Children



Treatment of SARS-CoV-2 infection in Children by Probiotics:

SARS-CoV-2 infection can exert both acute and chronic disorders, classified by an injury of tissue with a stimulated inflammatory reaction that is displayed in both respiratory tissues or systemic tissues, distal to the lungs (Iwasaki et al., 2021). With the development of a gut-lung axis of viral inflammation, the stability of the intestinal microbiome may play a major role in immune functions beyond virus-induced immunopathology (Tomkinson et al., 2023). The present research reported gastrointestinal (GI) features with diarrhea, inflammatory bowel disorders (IBD) with colitis, and a high ratio of deaths. It illustrates that dysbiosis mainly develops during SARS-CoV-2 infection because the gut-lung axis cannot be skipped (Ahlawat & Sharma, 2020).

Probiotics might aid in reducing inflammatory reactions of viral pathogenesis and respiratory symptoms by nourishing the host immunity or increasing the gut barrier systems. The probiotic strains such as *L. plantarum*, *lactobacillus rhamnosus*, *B. longum*, *L. bulgaricus*, *S. thermophilus*, and *D. pigrum* attack the respiratory tract through the gut-lung axis, enhance the immunity against SARS-CoV-2 infection as well as defeat the coronavirus infectious disorder-19 (COVID-19) epidemic (Cristiana et al., 2024).

Figure 8: Schematic Diagram of Probiotics Gut-lung Axis to Protect against SARS-CoV-2 in a Pandemic

Conclusion:

Probiotics have been proven successful for immune function modulation in preventing the replication of several viral respiratory diseases. The gut microbiome plays an effective role in health or disorder. The advantage of specific probiotic strains for controlling or inhibiting affected pediatric problems has been illustrated. In vitro analysis shows that probiotics have strain-specific immunomodulatory effects on the host or immune cells that trigger IFN pathways. The activation of the IFN pathways functions as the first line of defense against viral infections such as influenza virus, etc. Anyhow, an advanced study will provide extensive applications for combining probiotics into the prevention of recurrent respiratory infections (RRIs).

References

Ahlawat, S., & Sharma, K. K. (2020). Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. *Virus Research*, 286, 198103.

Al Kassaa, I. (2017). Antiviral probiotics: a new concept in medical sciences. *New insights on antiviral probiotics: From Research to Applications*, 1-46.

Bidossi, A., De Grandi, R., Toscano, M., Bottagisio, M., De Vecchi, E., Gelardi, M., & Drago, L. (2018). Probiotics *Streptococcus salivarius* 24SMB and *Streptococcus oralis* 89a interfere with biofilm formation of pathogens of the upper respiratory tract. *BMC Infectious Diseases*, 18, 1-11.

Browne, J. (2017). *A comparative analysis of the demographic and pathophysiological factors influencing cellular immunity in chronic otitis media-prone children* CQUniversity].

Charlton, C. L., Babady, E., Ginocchio, C. C., Hatchette, T. F., Jerris, R. C., Li, Y., Loeffelholz, M., McCarter, Y. S., Miller, M. B., & Novak-Weekley, S. (2018). Practical guidance for clinical microbiology laboratories: viruses causing acute respiratory tract infections. *Clinical Microbiology Reviews*, 32(1), 10.1128/cmr.00042-00018.

Chen, T. Y. (2021). *Probiotics and Acute Otitis Media (AOM)* University of Otago].

Chiappini, E., Santamaria, F., Marseglia, G. L., Marchisio, P., Galli, L., Cutrera, R., de Martino, M., Antonini, S., Becherucci, P., & Biasci, P. (2021). Prevention of recurrent respiratory infections: Inter-society Consensus. *Italian Journal of Pediatrics*, 47, 1-17.

Coleman, A., & Cervin, A. (2019). Probiotics in the treatment of otitis media. The past, the present and the future. *International Journal of Pediatric Otorhinolaryngology*, 116, 135-140.

Cristiana, I., Elisabetta, D. A., Chiara Lucia, B., Angela, K., Giulio, D., Alessandra, P., Maria Maddalena, M., Fabio, D., Giorgio, C., & Michele Miraglia del, G. (2024). Probiotics and Recurrent Respiratory Infections in Children. *Journal of Biological Regulators and Homeostatic Agents*, 38(6), 4477-4484. <https://doi.org/10.23812/j.biol.regul.homeost.agents.20243806.356>

Cuppari, C., Colavita, L., Miraglia Del Giudice, M., Chimenz, R., & Salpietro, C. (2020). Recurrent respiratory infections between immunity and atopy. *Pediatric Allergy and Immunology*, 31, 19-21.

D'Agostin, M., Squillaci, D., Lazzerini, M., Barbi, E., Wijers, L., & Da Lozzo, P. (2021). Invasive infections associated with the use of probiotics in children: a systematic review. *Children*, 8(10), 924.

Dargahi, N., Johnson, J., Donkor, O., Vasiljevic, T., & Apostolopoulos, V. (2019). Immunomodulatory effects of probiotics: Can they be used to treat allergies and autoimmune diseases? *Maturitas*, 119, 25-38.

Dargahi, N., Johnson, J. C., & Apostolopoulos, V. (2021). Immune modulatory effects of probiotic *Streptococcus thermophilus* on human monocytes. *Biologics*, 1(3), 396-415.

de Oliveira, T. B., Klering, E. A., & da Veiga, A. B. G. (2019). Is recurrent respiratory infection associated with allergic respiratory disease? *Journal of Asthma*, 56(2), 160-166.

Debnath, N., Kumar, A., & Yadav, A. K. (2022). Probiotics as a biotherapeutics for the management and prevention of respiratory tract diseases. *Microbiology and Immunology*, 66(6), 277-291.

Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R., & Blaser, M. J. (2019). Role of the microbiome in human development. *Gut*, 68(6), 1108-1114.

Fong, F. L. Y., Kirjavainen, P. V., & El-Nezami, H. (2016). Immunomodulation of *Lactobacillus rhamnosus* GG (LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors. *Scientific Reports*, 6(1), 22845.

Gao, H., Li, X., Chen, X., Hai, D., Wei, C., Zhang, L., & Li, P. (2022). The functional roles of *Lactobacillus acidophilus* in different physiological and pathological processes. *Journal of Microbiology and Biotechnology*, 32(10), 1226.

Govers, C., Calder, P. C., Savelkoul, H. F., Albers, R., & van Neerven, R. J. (2022). Ingestion, immunity, and infection: nutrition and viral respiratory tract infections. *Frontiers in Immunology*, 13, 841532.

Guitor, A. K., & Wright, G. D. (2018). Antimicrobial resistance and respiratory infections. *Chest*, 154(5), 1202-1212.

Huang, J., Zhang, J., Wang, X., Jin, Z., Zhang, P., Su, H., & Sun, X. (2022). Effect of probiotics on respiratory tract allergic disease and gut microbiota. *Frontiers in Nutrition*, 9, 821900.

Iwasaki, M., Saito, J., Zhao, H., Sakamoto, A., Hirota, K., & Ma, D. (2021). Inflammation triggered by SARS-CoV-2 and ACE2 augment drives multiple organ failure of severe COVID-19: molecular mechanisms and implications. *Inflammation*, 44, 13-34.

Kerry, R. G., Patra, J. K., Gouda, S., Park, Y., Shin, H.-S., & Das, G. (2018). Benefaction of probiotics for human health: A review. *Journal of Food and Drug Analysis*, 26(3), 927-939.

Kiššová, Z., Tkáčiková, L., Mudroňová, D., & Bhide, M. R. (2022). Immunomodulatory effect of *Lactobacillus reuteri* (Limosilactobacillus

reuteri) and its exopolysaccharides investigated on epithelial cell line IPEC-J2 challenged with *Salmonella Typhimurium*. *Life*, 12(12), 1955.

Konieczna, P., Akdis, C. A., Quigley, E. M., Shanahan, F., & O'Mahony, L. (2012). Portrait of an immunoregulatory Bifidobacterium. *Gut Microbes*, 3(3), 261-266.

Konovalovas, A., Armalytė, J., Klimkaitė, L., Liveikis, T., Jonaitytė, B., Danila, E., Bironaitė, D., Mieliauskaitė, D., Bagdonas, E., & Aldonytė, R. (2024). Human nasal microbiota shifts in healthy and chronic respiratory disease conditions. *BMC microbiology*, 24(1), 150.

Kouhounde, S., Adéoti, K., Mounir, M., Giusti, A., Refinetti, P., Otu, A., Effa, E., Ebenso, B., Adetimirin, V. O., & Barceló, J. M. (2022). Applications of probiotic-based multi-components to human, animal and ecosystem health: concepts, methodologies, and action mechanisms. *Microorganisms*, 10(9), 1700.

Lehtoranta, L., Latvala, S., & Lehtinen, M. J. (2020). Role of probiotics in stimulating the immune system in viral respiratory tract infections: A narrative review. *Nutrients*, 12(10), 3163.

Lim, H. J., & Shin, H. S. (2020). Antimicrobial and immunomodulatory effects of bifidobacterium strains: A review. *Journal of Microbiology and Biotechnology*, 30(12), 1793.

Nagaraju, K., Shah, R., Ganapathy, S., Roy, S., Bhatia, R., Kumar, P. S., Kanaujia, S., Karadkhele, A., Muchhala, S., & Rathod, R. (2021). Practical approach for the diagnosis, prevention, and management of recurrent upper respiratory tract infection in children: report from an expert closed-group discussion. *Pediatric Infectious Disease*, 3(3), 106.

Organization, W. H. (2023). *Managing epidemics: key facts about major deadly diseases*. World Health Organization.

Pico-Monllor, J. A., Ruzafa-Costas, B., Nunez-Delegido, E., Sanchez-Pellicer, P., Peris-Berraco, J., & Navarro-Lopez, V. (2021). Selection of probiotics in the prevention of respiratory tract infections and their impact on occupational health: scoping review. *Nutrients*, 13(12), 4419.

Raheem, A., Liang, L., Zhang, G., & Cui, S. (2021). Modulatory effects of probiotics during pathogenic infections with emphasis on immune regulation. *Frontiers in Immunology*, 12, 616713.

Ranjha, M. M. A. N., Shafique, B., Batool, M., Kowalczewski, P. Ł., Shehzad, Q., Usman, M., Manzoor, M. F., Zahra, S. M., Yaqub, S., & Aadil, R. M. (2021). Nutritional and health potential of probiotics: a review. *Applied Sciences*, 11(23), 11204.

Romandini, A., Pani, A., Schenardi, P. A., Pattarino, G. A. C., De Giacomo, C., & Scaglione, F. (2021). Antibiotic resistance in pediatric infections: global emerging threats, predicting the near future. *Antibiotics*, 10(4), 393.

Sarlin, S., Koskela, U., Honkila, M., Tähtinen, P. A., Pokka, T., Renko, M., & Tapiainen, T. (2023). Streptococcus salivarius probiotics to prevent acute otitis media in children: A randomized clinical trial. *JAMA Network Open*, 6(11), e2340608-e2340608.

Stavropoulou, E., & Bezirtzoglou, E. (2020). Probiotics in medicine: a long debate. *Frontiers in Immunology*, 11, 2192.

Suzuki, H. G., Dewez, J. E., Nijman, R. G., & Yeung, S. (2020). Clinical practice guidelines for acute otitis media in children: a systematic review and appraisal of European national guidelines. *BMJ Open*, 10(5), e035343.

Tomkinson, S., Triscott, C., Schenk, E., & Foey, A. (2023). The potential of probiotics as ingestible adjuvants and immune modulators for antiviral immunity and management of SARS-CoV-2 infection and COVID-19. *Pathogens*, 12(7), 928.

Troeger, C., Blacker, B., Khalil, I. A., Rao, P. C., Cao, J., Zimsen, S. R., Albertson, S. B., Deshpande, A., Farag, T., & Abebe, Z. (2018). Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. *The Lancet Infectious Diseases*, 18(11), 1191-1210.

Vertillo Aluisio, G., Spitale, A., Bonifacio, L., Privitera, G. F., Stivala, A., Stefani, S., & Santagati, M. (2022). Streptococcus salivarius 24SMBc genome analysis reveals new biosynthetic gene clusters involved in antimicrobial effects on Streptococcus pneumoniae and Streptococcus pyogenes. *Microorganisms*, 10(10), 2042.

Vysochyna, I., & Kramarchuk, V. (2023). Cation composition of oral secretion in primary school-aged children. *Здобутки клінічної і експериментальної медицини*, 3(55), 25-31.